References
Bajwa, Rizwan Saqib, Naveed Ahsan, and Sajid Rashid Ahmad. 2020.
“A Review of Landsat False Color Composite Images for Lithological
Mapping of Pre-Cambrian to Recent Rocks: A Case Study of Pail/Padhrar
Area in Punjab Province, Pakistan.” Journal of the Indian
Society of Remote Sensing 48 (5): 721–28. https://doi.org/10.1007/s12524-019-01090-7.
Ermida, Sofia L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche, and
Isabel F. Trigo. 2020. “Google Earth Engine Open-Source Code for
Land Surface Temperature Estimation from the Landsat Series.”
Remote Sensing 12 (9): 1471. https://doi.org/10.3390/rs12091471.
Huang, Xin, and Ying Wang. 2019a. “Investigating the Effects of 3D
Urban Morphology on the Surface Urban Heat Island Effect in Urban
Functional Zones by Using High-Resolution Remote Sensing Data: A Case
Study of Wuhan, Central China.” ISPRS Journal of
Photogrammetry and Remote Sensing 152 (June): 119–31. https://doi.org/10.1016/j.isprsjprs.2019.04.010.
———. 2019b. “Investigating the Effects of 3D Urban Morphology on
the Surface Urban Heat Island Effect in Urban Functional Zones by Using
High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central
China.” ISPRS Journal of Photogrammetry and Remote
Sensing 152 (June): 119–31. https://doi.org/10.1016/j.isprsjprs.2019.04.010.
Locke, Dexter H., J. Morgan Grove, Jacqueline W. T. Lu, Austin Troy,
Jarlath P. M. O’Niel-Dunne, and Brian D. Beck. 2010. “Prioritizing
Preferable Locations for Increasing Urban Tree Canopy in New York
City.” Cities and the Environment 3 (1): 1–18. https://doi.org/10.15365/cate.3142010.
Loukika, Kotapati Narayana, Venkata Reddy Keesara, and Venkataramana
Sridhar. 2021a. “Analysis of Land Use and Land Cover Using Machine
Learning Algorithms on Google Earth Engine for Munneru River Basin,
India.” Sustainability 13 (24): 13758. https://doi.org/10.3390/su132413758.
———. 2021b. “Analysis of Land Use and Land Cover Using Machine
Learning Algorithms on Google Earth Engine for Munneru River Basin,
India.” Sustainability 13 (24): 13758. https://doi.org/10.3390/su132413758.
Mackey, Christopher W., Xuhui Lee, and Ronald B. Smith. 2012a.
“Remotely Sensing the Cooling Effects of City Scale Efforts to
Reduce Urban Heat Island.” Building and Environment 49
(March): 348–58. https://doi.org/10.1016/j.buildenv.2011.08.004.
———. 2012b. “Remotely Sensing the Cooling Effects of City Scale
Efforts to Reduce Urban Heat Island.” Building and
Environment 49 (March): 348–58. https://doi.org/10.1016/j.buildenv.2011.08.004.
Morales-Barquero, Lucia, Mitchell B. Lyons, Stuart R. Phinn, and Chris
M. Roelfsema. 2019a. “Trends in Remote Sensing Accuracy Assessment
Approaches in the Context of Natural Resources.” Remote
Sensing 11 (19): 2305. https://doi.org/10.3390/rs11192305.
———. 2019b. “Trends in Remote Sensing Accuracy Assessment
Approaches in the Context of Natural Resources.” Remote
Sensing 11 (19): 2305. https://doi.org/10.3390/rs11192305.
Moravec, David, Jan Komárek, Serafín López-Cuervo Medina, and Iñigo
Molina. 2021. “Effect of Atmospheric Corrections on NDVI:
Intercomparability of Landsat 8, Sentinel-2, and UAV Sensors.”
Remote Sensing 13 (18): 3550. https://doi.org/10.3390/rs13183550.
Phan, Thanh Noi, Verena Kuch, and Lukas W. Lehnert. 2020. “Land
Cover Classification Using Google Earth Engine and Random Forest
ClassifierThe Role of Image Composition.” Remote
Sensing 12 (15): 2411. https://doi.org/10.3390/rs12152411.
Philip A., Davis. 2007. “Landsat ETM+ False-Color Image Mosaics of
Afghanistan.”
Poncet, Aurelie M., Thorsten Knappenberger, Christian Brodbeck, Michael
Fogle, Joey N. Shaw, and Brenda V. Ortiz. 2019a. “Multispectral
UAS Data Accuracy for Different Radiometric Calibration Methods.”
Remote Sensing 11 (16): 1917. https://doi.org/10.3390/rs11161917.
———. 2019b. “Multispectral UAS Data Accuracy for Different
Radiometric Calibration Methods.” Remote Sensing 11
(16): 1917. https://doi.org/10.3390/rs11161917.
Sidhu, Nanki, Edzer Pebesma, and Gilberto Câmara. 2018a. “Using
Google Earth Engine to Detect Land Cover Change: Singapore as a Use
Case.” European Journal of Remote Sensing 51 (1):
486–500. https://doi.org/10.1080/22797254.2018.1451782.
———. 2018b. “Using Google Earth Engine to Detect Land Cover
Change: Singapore as a Use Case.” European Journal of Remote
Sensing 51 (1): 486–500. https://doi.org/10.1080/22797254.2018.1451782.
———. 2018c. “Using Google Earth Engine to Detect Land Cover
Change: Singapore as a Use Case.” European Journal of Remote
Sensing 51 (1): 486–500. https://doi.org/10.1080/22797254.2018.1451782.
Tassi, Andrea, Daniela Gigante, Giuseppe Modica, Luciano Di Martino, and
Marco Vizzari. 2021a. “Pixel- Vs. Object-Based Landsat 8 Data
Classification in Google Earth Engine Using Random Forest: The Case
Study of Maiella National Park.” Remote Sensing 13 (12):
2299. https://doi.org/10.3390/rs13122299.
———. 2021b. “Pixel- Vs. Object-Based Landsat 8 Data Classification
in Google Earth Engine Using Random Forest: The Case Study of Maiella
National Park.” Remote Sensing 13 (12): 2299. https://doi.org/10.3390/rs13122299.
Wu, Chunxia, Qingfu Xiao, and E. Gregory McPherson. 2008. “A
Method for Locating Potential Tree-Planting Sites in Urban Areas: A Case
Study of Los Angeles, USA.” Urban Forestry & Urban
Greening 7 (2): 65–76. https://doi.org/10.1016/j.ufug.2008.01.002.