References

Bajwa, Rizwan Saqib, Naveed Ahsan, and Sajid Rashid Ahmad. 2020. “A Review of Landsat False Color Composite Images for Lithological Mapping of Pre-Cambrian to Recent Rocks: A Case Study of Pail/Padhrar Area in Punjab Province, Pakistan.” Journal of the Indian Society of Remote Sensing 48 (5): 721–28. https://doi.org/10.1007/s12524-019-01090-7.
Ermida, Sofia L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche, and Isabel F. Trigo. 2020. “Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series.” Remote Sensing 12 (9): 1471. https://doi.org/10.3390/rs12091471.
Huang, Xin, and Ying Wang. 2019a. “Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China.” ISPRS Journal of Photogrammetry and Remote Sensing 152 (June): 119–31. https://doi.org/10.1016/j.isprsjprs.2019.04.010.
———. 2019b. “Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China.” ISPRS Journal of Photogrammetry and Remote Sensing 152 (June): 119–31. https://doi.org/10.1016/j.isprsjprs.2019.04.010.
Locke, Dexter H., J. Morgan Grove, Jacqueline W. T. Lu, Austin Troy, Jarlath P. M. O’Niel-Dunne, and Brian D. Beck. 2010. “Prioritizing Preferable Locations for Increasing Urban Tree Canopy in New York City.” Cities and the Environment 3 (1): 1–18. https://doi.org/10.15365/cate.3142010.
Loukika, Kotapati Narayana, Venkata Reddy Keesara, and Venkataramana Sridhar. 2021a. “Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India.” Sustainability 13 (24): 13758. https://doi.org/10.3390/su132413758.
———. 2021b. “Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India.” Sustainability 13 (24): 13758. https://doi.org/10.3390/su132413758.
Mackey, Christopher W., Xuhui Lee, and Ronald B. Smith. 2012a. “Remotely Sensing the Cooling Effects of City Scale Efforts to Reduce Urban Heat Island.” Building and Environment 49 (March): 348–58. https://doi.org/10.1016/j.buildenv.2011.08.004.
———. 2012b. “Remotely Sensing the Cooling Effects of City Scale Efforts to Reduce Urban Heat Island.” Building and Environment 49 (March): 348–58. https://doi.org/10.1016/j.buildenv.2011.08.004.
Morales-Barquero, Lucia, Mitchell B. Lyons, Stuart R. Phinn, and Chris M. Roelfsema. 2019a. “Trends in Remote Sensing Accuracy Assessment Approaches in the Context of Natural Resources.” Remote Sensing 11 (19): 2305. https://doi.org/10.3390/rs11192305.
———. 2019b. “Trends in Remote Sensing Accuracy Assessment Approaches in the Context of Natural Resources.” Remote Sensing 11 (19): 2305. https://doi.org/10.3390/rs11192305.
Moravec, David, Jan Komárek, Serafín López-Cuervo Medina, and Iñigo Molina. 2021. “Effect of Atmospheric Corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV Sensors.” Remote Sensing 13 (18): 3550. https://doi.org/10.3390/rs13183550.
Phan, Thanh Noi, Verena Kuch, and Lukas W. Lehnert. 2020. “Land Cover Classification Using Google Earth Engine and Random Forest ClassifierThe Role of Image Composition.” Remote Sensing 12 (15): 2411. https://doi.org/10.3390/rs12152411.
Philip A., Davis. 2007. “Landsat ETM+ False-Color Image Mosaics of Afghanistan.”
Poncet, Aurelie M., Thorsten Knappenberger, Christian Brodbeck, Michael Fogle, Joey N. Shaw, and Brenda V. Ortiz. 2019a. “Multispectral UAS Data Accuracy for Different Radiometric Calibration Methods.” Remote Sensing 11 (16): 1917. https://doi.org/10.3390/rs11161917.
———. 2019b. “Multispectral UAS Data Accuracy for Different Radiometric Calibration Methods.” Remote Sensing 11 (16): 1917. https://doi.org/10.3390/rs11161917.
Sidhu, Nanki, Edzer Pebesma, and Gilberto Câmara. 2018a. “Using Google Earth Engine to Detect Land Cover Change: Singapore as a Use Case.” European Journal of Remote Sensing 51 (1): 486–500. https://doi.org/10.1080/22797254.2018.1451782.
———. 2018b. “Using Google Earth Engine to Detect Land Cover Change: Singapore as a Use Case.” European Journal of Remote Sensing 51 (1): 486–500. https://doi.org/10.1080/22797254.2018.1451782.
———. 2018c. “Using Google Earth Engine to Detect Land Cover Change: Singapore as a Use Case.” European Journal of Remote Sensing 51 (1): 486–500. https://doi.org/10.1080/22797254.2018.1451782.
Tassi, Andrea, Daniela Gigante, Giuseppe Modica, Luciano Di Martino, and Marco Vizzari. 2021a. “Pixel- Vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park.” Remote Sensing 13 (12): 2299. https://doi.org/10.3390/rs13122299.
———. 2021b. “Pixel- Vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park.” Remote Sensing 13 (12): 2299. https://doi.org/10.3390/rs13122299.
Wu, Chunxia, Qingfu Xiao, and E. Gregory McPherson. 2008. “A Method for Locating Potential Tree-Planting Sites in Urban Areas: A Case Study of Los Angeles, USA.” Urban Forestry & Urban Greening 7 (2): 65–76. https://doi.org/10.1016/j.ufug.2008.01.002.